
 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 270

 Design and Implementation of Efficient

MLDD for Error Detection and Correction

Ms. Minal M. Jaiswal
1
, Prof. Ashish E. Bhande

2

PG Student, Electronics Department, HVPM‟s College of Engineering and Technology, Amravati, India 1

Assistant Professor, Electronics Department, HVPM‟s College of Engineering and Technology, Amravati, India 2

Abstract: A small transition delays and little faults create major concern in digital circuits. It Produce greater impact on

not only for simple memory but also for most of the memory applications. During encoding and decoding process, the

error may occur in the codeword which results in the mismatching or loss of information. Error detection and correction

are main issues in the memory which needs to be identified and corrected. The proposed method will identify the error

and correct the error in the memory application using Majority Logic Decoder and Detector (MLDD). MLDD corrects

the error based on number of parity check equation. This technology reduces the N-iteration to three iteration, if the
codeword doesn‟t contain any fault. It reduces the memory access time when there is no fault in data read. However it

reduces the decoding time that increase memory application. Therefore delay is reduced. All the codes for MLDD

design are written in VHDL. Modelsim SE 6.3f used for simulation process and the system is implemented on

Sparatan-6 - XC6SLX16 - CSG324C FPGA kit.

Keywords: Encode, Error correction, Fault detection, Serial one step MLD, Majority logic decoder/detector, Memory,

Soft error, sorting network.

I. INTRODUCTION

Now a day, data communication has become essential part

of life and a lot of data is being transferred. Many

communication channels are subject to channel noise, and
thus errors may be introduced during transmission from

the source to a receiver. There also are different ways of

hacking, where the intruder modifies the data while

communication. So to protect the confidentiality of the

data and to retain the correctness of the data, secure

communication is very important. There are different

methods of implementing the secure communication. Each

method has its own advantages and disadvantages. This

project is an improvement on most of the existing methods

for secure communication.

For reliable communication, errors must be detected and

corrected. Some multi error bit correction codes are BCH

codes, Reed Solomon codes, but in which the algorithm is

very difficult. These codes can correct a large number of

errors, but need complex decoders. Among the error

correction codes, cyclic block codes have higher error

detection capability, low decoding complexity and that are

majority logic (ML) decodable. A low-density parity-

check (LDPC) code is a linear error correcting code, used

to avoid a high decoding complexity. one specific type of

low density parity check codes, namely Euclidean

Geometry-LDPC codes are used due to their fault secure
detector capability, higher reliability and lower area

overhead.

Error correction codes are commonly used to protect

memories from so-called soft errors, which change the

logical value of memory cells without damaging the

circuit. As technology scales, memory devices become

larger and more powerful error correction codes are

needed. To this end, the use of more advanced codes has

been recently proposed. These codes can correct a larger

number of errors, but generally require complex decoders.
To avoid a high decoding complexity, the use of one step

majority logic decodable codes was first proposed in for

memory applications. One step majority logic decoding

can be implemented serially with very simple circuitry, but

requires long decoding times. In a memory, this would

increase the access time which is an important system

parameter. Only a few classes of codes can be decoded

using one step majority logic decoding. Among those are

some Euclidean geometry low density parity check (EG-

LDPC) codes which were used in, and difference set low

density parity check (DS-LDPC) codes.

Error Correcting Codes are commonly used on memories.

Codeword is parity bits and are appending with the data

bits. Codeword is written into and read from the

memories. The Hamming codes and Hsiao codes are used

to correct the single bit-flip and double bit-flips in the

memory, area and performances are high. For multiple

errors, codes needed more parity bits in the above methods

and hence not efficient. Bose-Chaudhuri-Hocquenghem

(BCH)is authoritative random error correcting codes. It is

used in the communication system. The demerits of these

codes are redundancy requirement and complex decoding
so they are not used in high speed memory application.

Berlekamp-Massey, Euclidian and weight decoding

algorithms require multi-cycles decoding, which is not

adequate for embedded memories. Syndrome vectors are

simple and power decoder. It detects the error in the

codeword and corrects it. The drawback is that, for N-bits

it will process N iteration. MLD is simple decoder and

complexity. The demerits of the MLD are that

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 271

performances of the system are reduced because it takes

N-iteration for N-bit codeword.

Particularly, we identify a class of error-correcting codes

(ECCs) that guarantees the existence of a simple fault-

tolerant detector design. This class satisfies a new,
restricted definition for ECCs which guarantees that the

ECC codeword has an appropriate redundancy structure

such that it can detect multiple errors occurring in both the

stored codeword in memory and the surrounding

circuitries. We call this type of error-correcting codes,

fault-secure detector capable ECCs (FSD-ECC). The

parity-check Matrix of an FSD-ECC has a particular

structure that the decoder circuit, generated from the

parity-check Matrix, is Fault-Secure. The ECCs we

identify in this class are close to optimal in rate and

distance, suggesting we can achieve this property without

sacrificing traditional ECC metrics.

We use the fault-secure detection unit to design a fault-

tolerant encoder and corrector by monitoring their outputs.

If a detector detects an error in either of these units, that

unit must repeat the operation to generate the correct

output vector. Using this retry technique, we can correct

potential transient errors in the encoder and corrector

outputs and provide a fully fault-tolerant memory system.

A method was recently proposed to accelerate a serial

implementation of majority logic decoding of EG-LDPC

codes. The design behind the method is to use the first
iterations of majority logic decoding to detect if the word

decoded contains errors.

If it is found there are no errors, then decoding process can

be stopped. Decoding time is much more reduced because

of stopping the iterations before fully completing. For a

code with block length N, majority logic decoding which

is implemented serially requires N iterations, so that the

sizes of the code increase, so the decoding time also

increase. In the proposed system, the errors are detected in

parallel and in pipelining method. The detection of errors

requires only single iteration where most of the errors are
detected. The delay time is reduced for this proposed

method is low compared to the prior technique.

II. LITERATURE REVIEW

[1]. Pedro Reviriego, Juan A. Maestro, and Mark F.

Flanagan presented, Error Detection in Majority Logic

Decoding of Euclidean Geometry Low Density Parity
Check (EG-LDPC) Codes. A method was proposed to

accelerate the logic decoding of difference set low density

parity check codes. The detection of errors during the first

iterations of serial one step Majority Logic Decoding of

EG-LDPC codes has been studied.

The objective was to reduce the decoding time by stopping

the decoding process when no errors are detected. The

simulation results show that all tested combinations of

errors affecting up to four bits are detected in the first

three iterations of decoding. These results extend the ones
recently presented for DS-LDPC codes, making the

modified one step majority logic decoding more attractive

for memory applications. The designer now has a larger

choice of word lengths and error correction capabilities.

[2]. P. Kalai Mani, V. Vishnu Prasath presented, Majority

Logic Decoding Of Euclidean Geometry Low Density

Parity Check (EG-LDPC) Codes. Error detection in
memory applications was proposed to accelerate the

majority logic decoding of difference set low density

parity check codes. This is useful as majority logic

decoding can be implemented serially with simple

hardware but requires a large decoding time. For memory

applications, this increases the memory access time. The

method detects whether a word has errors in the first

iterations of majority logic decoding, and when there are

no errors the decoding ends without completing the rest of

the iterations. Since most words in a memory will be error

free, the average decoding time is greatly reduced. In this
brief, the application of a similar technique to a class of

Euclidean geometry low density parity check (EG-LDPC)

codes that are one step majority logic decodable. The

results obtained show that the method is also effective for

EG-LDPC codes.

[3]. M.Pramodh kumar, S.Murali mohan presented, Serial

One-Step Majority Logic Decoder for EG-LDPC Code. In

this brief, the detection of errors during the first iterations

of serial one step Majority Logic Decoding of EG-LDPC

codes has been studied. The objective was to reduce the

decoding time by stopping the decoding process when no
errors are detected. The simulation results show that all

tested combinations of errors affecting up to four bits are

detected in the first three iterations of decoding. These

results extend the ones recently presented for DS-LDPC

codes, making the modified one step majority logic

decoding more attractive for memory applications. The

designer now has a larger choice of word lengths and error

correction capabilities.

[4]. Adline Priya presented, Low Power Error Correcting

Codes Using Majority Logic Decoding. Moreover, the
decoder architecture for LDPC codes are designed. And

the simulation results for encoder, decoder, memory and

detector are obtained. And also the majority logic decoder

is implemented serially.

[5]. Senbagapriya.S. presented, An Efficient Enhanced

Majority Logic Fault Detection with Euclidean Geometry

Low Density Parity Check (EG-LDPC) Codes for Memory

Applications. In this paper, the detection of errors during

first iterations of serial one step Majority Logic Decoding

of EG-LDPC codes has been presented. The simulation

results show that the one step MLD would takes 15cycles
to decode a codeword of 15-bits, which would be

excessive for most applications. The MLD design requires

small area but requires large decoding time and can able to

detect two or few errors. Hence, memory access time

increases. Another method, called MLDD can detect up to

five bit-flips and consumes the area of majority gate. The

proposed enhanced MLDD have the capability of

detecting more than five bit flips and also reduces the area

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 272

of majority gate by the use of sorting network. Finally, the

decoding cycle slightly will increase compared to MLDD

approach. These two designs are under progress.

[6]. M. Sakthivel, M. Karthick Raja, K R. Ragupathy and

K. Sathis Kumar presented, Performance comparision of
EG-LDPC codes with maximum likelihood algorithm over

non binery LDPC codes. The power consumed by the

components used for the construction of NB-LDPC codes

and EG-LDPC codes with ML algorithm was simulated

using Xilinx Power Estimator series7 XPE 2013. The

power is calculated by loading number of flip-flops and

slice LUT registers used. The comparison of Junction

Temperature VS power and power consumed by elements

for NB-LDPC and EG-LDPC with ML algorithm.

[7] K .Manikandan, G. Thiruselvi presented, Fault secure
memory design using difference set codes. Modified

Majority Logic detector/decoder (MLDD) code algorithms

for difference set codes for memory applications have

been proposed. A fault-detection mechanism, Modified

MLDD, has been presented based on MLDD decoding

using the DSCCs .The proposed technique is able to detect

any pattern of up to more than five bit-flips in the three to

nine cycles depending on the codeword length of the

decoding process. This improves the performance of the

design with respect to the traditional MLD approach. This

is useful to avoid silent data corruption that can cause

catastrophic failures in critical systems. By combining
with MLDD techniques, the modified MLDD algorithms

can be implemented very efficiently in terms of efficiency

with a low latency. This makes them attractive for

memory applications. The proposed scheme can be

extended by requiring a larger of the majority logic check

equations to take a value of one to perform a correction.

This would increase the error detection capabilities at the

expense of the error-correction capabilities.

[8] R. Meenaakshi Sundhari, C. Sundarrasu,

M.Karthikkumar presented, an efficient majority logic
fault detection to reduce the accessing time for memory

applications. A fault detection technique, majority logic

detector and decoder, has been presented based on

majority logic decoding using the quasi cyclic LDPC

codes. Exhaustive simulation test output shows that the

proposed system is able to detect any pattern of up to five

bit-flips in the first three cycles of the decoding, which

improves the performance of the design with respect to the

traditional majority logic decoding approach. In the same

way, the majority logic detector and decoder in which

error detector module has been proposed in a way that is

independent of the code size. This makes its area overhead
quite reduced compared with other traditional approaches

such as the syndrome fault calculation.

[9] Anu Jose, M. Revathy presented, VLSI

implementation of EG-LDPC codes using maximum

likelihood decoding. The detection of errors during the

first iterations of serial one step Majority Logic Decoding

of EG-LDPC codes have been studied. The main objective

of the work is to reduce the decoding time by stopping the

decoding process when no errors are detected. The

simulation results now shows that all the tested

combinations of errors affecting up to four bits are

detected and corrected in the first three iterations of

decoding. These results extends to ones recently presented
for DS-LDPC codes, making the modified one step

Majority logic decoding more attractive for memory

applications.

[10] D.Subalakshmi, P. S. Raghavendran presented, Error

identification and correction for memory application using

majority logic decoder and detector. An error detection

mechanism, called Majority Logic Decoder and Detector

has been proposed based on Majority Logic Decoder

technique. The simulation results are explained about the

detection and correction of the error using the proposed
MLDD method. In this paper, the better performance is

achieved by MLDD method compared to MLD and MLD

with syndrome vector. The main advantage of the MLDD

technique which is designed independent of the size of the

codeword. This helps to reduce the area when compared to

other technique. The further scope is to eliminate the silent

error corruption. If the input has more than four bit error in

the codeword, then the MLDD process is not exactly

suitable to correct the codeword. In such case, silent fault

corruption may occur. To reduce such fault, one more

detection logic can be implemented after the completion of

73 iteration.

In order to overcome the drawback of MLD method,

majority logic decoder/detector was proposed, in which

the majority logic decoder itself act as a fault detector. In

general, the decoding algorithm is still the same as the

majority logic decoder. The difference is that instead of

decoding all codeword bits, the MLDD method stops

intermediately in the third cycle, which can able to detect

up to five bit flips in three decoding cycles. So the number

of decoding cycles can be reduced to get improved

performance.

Syndrome vector method overcomes the demerits of

Majority Logic Decoder (MLD) method. The faulty

codeword are decoder, by adding the fault detector which

calculates the syndrome value. This will not affect the

performances of the system because most of the codeword

are error-free. The main drawback of this system increases

the complexity to the design. Based on parity check

equation, the XOR matrix calculates the syndrome value.

This increases the complexity of the syndrome value

vector based on the size of the codeword. An error in the

codeword is identified when the syndrome vector value is
„1‟, then the ML decoder is used to correct the wrong

codeword. Otherwise it forwards the codeword to the

output, without correcting cycles. In this method, the

performance is improved the performances of the system

but additional module which increases the complexity to

the design. Further, it increases the power complexity and

reduces the performances of the system. It will increase

the power consumption. Syndrome vector is oldest

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 273

technology, which is used to detect the error in the

codeword. Syndrome decoder is linear decoder. Hamming

code is one of the example of syndrome decoder. Thus the

proposed MLDD method overcomes the demerits of above

existing method.

III. PROPOSED WORK

A. General schematic of MLDD

The general schematic of MLDD is shown in figure 1.

Which consist of Encoder, Memory and MLDD.

Fig. 1 General schematic of MLDD

Initially, the data words are encoded and then stored in the

memory. When the memory is read, the codeword is then

fed through the MLDD before sent to the output for
further processing. In this decoding process, the data word

is corrected from all bit flips that it might have suffered

while being stored in the memory.

B. Overall MLDD system

In this section we present overall MLDD system in our

proposed work. In this system we present the detail of

encoder, memory, serial corrector, parallel corrector, and

pipeline and parallel corrector and detector units of our

proposed fault-tolerant memory system.

Fig.2 MLDD system with serial corrector

Fig.3 MLDD system with parallel corrector

Fig.4 MLDD system with pipeline corrector

a. Encoder:

The information bits are fed into the encoder to encode the

information vector. This section provides a brief

introduction on linear block ECC‟s. Let I = (i0, i1, ..., i

k−1) be k-bit information vector that will be encoded into

n-bit codeword, C= (c0, c1, ..., c n− 1). For linear codes

the encoding operation essentially performs the following
vector-matrix Multiplication.

C = I × G

Where, G is a k × n generator matrix.

A code is a systematic code if any codeword consists of

the original k-bit information vector followed by (n – k)

parity-bits. With this definition, the generator matrix of a

systematic code must have the following structure.

G = [I: X]

Where, I is a k × k identity matrix and X is a k×(n−k)

matrix that generates the parity-bits.

Fig. 1.1 Structure of an Encoder Circuit

Figure 1.1 shows the encoder circuit to compute the parity

bits of the (15, 7, 5) EG-LDPC code. In this figure I = (i0,

i1,…..i6) is the information vector and will be copied to
C=(c0,…………c6) bits of the encoded vector C, and the

rest of encoded vector, the parity bits, are linear sums

(XOR) of the information bits.

b. Fault Secure Detector:

The fault secure detector of the encoder verifies the

validity of the encoded vector. If the detector detects any
error, the encoding operation must be redone to generate

the correct codeword. The codeword is then stored in the

memory. A code is said to be cyclic code if for any

codeword c, all the cyclic shifts of C is still a valid

codeword. A code is cyclic if the rows of its parity-check

matrix and generator matrix are the cyclic shifts of their

first rows. The checking or detecting operation is the

following vector-matrix multiplication.

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 274

S = 𝐶×𝐻𝑇
Where, H is an (n−k) ×n Parity-Check matrix. The (n − k)-

bit vector S is called syndrome vector.

A syndrome vector is zero if C is a valid codeword and

non-zero if C is an erroneous codeword.

c. Memory block:

Data bits stay in memory for a number of cycles and,
during this period, each memory bit can be upset by a

transient fault with certain probability. Therefore, transient

errors accumulate in the memory words over time. In

order to avoid accumulation of too many errors in any

memory word that surpasses the code correction

capability, the system must perform memory scrubbing.

Memory scrubbing is the process of periodically reading

memory words from the memory, correcting any potential

errors, and writing them back into the memory. To

perform the periodic scrubbing operation, the normal

memory access operation is stopped and the memory
performs the scrub operation.

d. Corrector:

During memory access operation, the stored code words

will be accessed from the memory unit. Code words are

susceptible to transient faults while they are stored in the

memory. Therefore a corrector unit is designed to correct

potential errors in the retrieved code words. In our design

all the memory words pass through the corrector and any

potential error in the memory words will be corrected.

Similar to the encoder unit, a fault secure detector

monitors the operation of the corrector unit.

Fig.1.2 Serial one step majority logic decoder

To detect the errors serially the MLDD technique uses

Serial One Step Majority Logic Decoder. The serial one

step majority logic decoder is depicted in fig.1.2. In this

decoder 15 bit data is first stored in the cyclic shift

register. Then the inputs are assigned to the XOR gates.

Since there is 15 bit data the XOR gates required are four.

The bit to be detected should be given as one of the inputs

for all the XOR gates. The outputs of the XOR gates are

the check sum equations. The check sum equations consist

of binary data. Then the Majority circuit outputs the data
which is in major number. If the output of the majority

circuit is „1‟ then the corresponding bit has the error else

the bit is error free.

The output of the Majority circuit is given as one of the

input to the correction gate. Another input to the

correction gate is the bit which is under test. So the

corrected bit is stored into the shift register where first

cyclic shift occurs. This entire process is called as one

iteration.

Majority circuit implementation: Here majority circuit

implementation gate use Sorting Networks the majority

gate has application in many other error-correcting codes,

and this compact implementation can improve many other

applications. We use binary Sorting Networks [15] to do

the sort operation of the second step efficiently. An –input

sorting network is the Structure that sorts a set of n bits,

using 2-bit sorter building blocks. Fig.1.3 shows a 4-input

sorting network. Each of the vertical lines represents one

comparator which compares two bits and assigns the
larger one to the top output and the smaller one to the

bottom. The four-input sorting network, has five

comparator blocks, where each block consists of two two-

input gates; overall the four-input sorting network consists

of ten two-input gates in total.

Fig.1.3 Four-input sorting network; each vertical line

shows a one-input comparator. (b) One comparator

structure.

Serial Corrector: As mentioned earlier, the same one-step

majority-logic corrector can be used to correct all the n

bits of the received codeword of a cyclic code. To correct

each code-bit, the received encoded vector is cyclic shifted

and fed into to the XOR gates as shown in fig.1.2. The

serial majority corrector takes n cycles to correct an

erroneous codeword. If the fault rate is low, the corrector

block is used infrequently; since the common case is error-

free codewords, the latency of the corrector will not have a

severe impact on the average memory read latency. The

serial corrector must be placed off the normal memory
read path. This is shown in Fig.2. The memory words

retrieved from the memory unit are checked by detector

unit. If the detector detects an error, the memory word is

sent to the corrector unit to be corrected, which has the

latency of the detector plus the n round latency of the

corrector.

I Parallel corrector: The corrector is used more

frequently and its latency can impact the system

performance. Therefore we can implement a parallel one-

step majority corrector which is essentially n copies of the

single one-step majority-logic corrector. Fig.1.4 shows a
system integration using the parallel corrector. The logic

blocks are same for the parallel MLDD as in the serial

MLDD. But required is more number of majority gates

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 275

and correction gates, each gate is assigned for a single bit

which is shown in fig.1.4. The memory schematic for

parallel processing MLDD is shown in fig.2. In Parallel

schematic each bit of the code word fed for error detection

and correction consist of its parity check equation,

correction gate and majority gate.

Fig.1.4 Parallel corrector design

Pipeline parallel corrector: The pipelining process is done

for the proposed Parallel processing technique by adding
registers as shown in fig.1.5. So that the delay is reduced

compare to parallel processing. All the memory words are

pipelined through the parallel corrector. This way the

corrected memory words are generated every cycle. The

detector in the parallel case monitors the operation of the

corrector; if the output of the corrector is erroneous, the

detector signals the corrector to repeat the operation.

Fig.1.5 Pipeline corrector design

IV SIMULATION RESULT

The architecture is implemented using spartan6 family and

XC6LX16 device in Xilinx 14.5.The proposed system is

written in VHDL language and synthesized in Xilinx 14.5

and stimulated using Modelsim SE 6.3f. The results are

shown in following figures. First set the clock and reset.
Then gives the 7 bit input i.e. (c0.....c6) which is

information bit and then we got 15 bit codeword i.e.

(c0......c14).

Fig.3.1 Simulation result for Encoder

In simulation process clock and reset bit is set then gives

the 15 bit codeword which is received from the encoder. If

the syndrome vector output is 0000 then the received

codeword is error free otherwise in received codeword

error is generated.

Fig.3.2 Simulation result for Fault secure detector

Memory in which chip select (CS), write enable (WE),

output enable (OE) bits are used. First set the clock, for

write operation select chip select bit and write enable bit is

1 also set output enable bit 0. Then write 15 bit codeword

in address 0000 to 1111. For read operation select chip

select bit and output enable bit is 1 also select write enable

bit is 0. Give any address i.e. 0000 to 1111. The data_out

shows the 15 bit codeword which stored in the given

address.

Fig.3.3 Simulation result for Memory

In serial corrector first set clock and reset then give the

suspected codeword (gives 15 bit codeword one by one

from c14......c0). If the suspected codeword is error free

then the majority_gate_out is 0 and find the corrected

information vector. In suspected codeword error is

generated then the majority_gate_out is 1and the serial

corrector corrects that error and gives the correct

information vector. Serial corrector detects and corrects up

to two bit error. In serial corrector 15 cycles used for write

the operation and 15 cycles used for read operation.

Fig.3.4 (a) Simulation result for serial corrector without

error

Fig.3.4 (b) Simulation result for serial corrector with error

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 276

In parallel corrector first set clock and reset then gives the

15 bit suspected codeword. If the suspected codeword is

error free then the majority_gate_out is 000000000000000

and the corrected information vector is shown. Otherwise

the majority_gate_out is shows 1 of that bit errors are

generated. Parallel corrector detects and corrects up to two
bit error. In parallel corrector there are only two cycles are

used, one for write operation and second for read the

operation.

Fig.3.5 Simulation result for parallel corrector

In pipeline corrector first set the clock and reset also the

pipeline_en bit is 1. Pipeline corrector performs the same
operation of a parallel corrector. Only difference is that in

pipeline corrector we used pipeline register which is

reduced the delay compare to the parallel corrector.

Fig. 3.6 Simulation result for pipeline corrector

For hardware implementation we used Nexys3 Xilinx
Spartan-6 - XC6SLX16 – CSG324C FPGA kit is used.

The Spartan-6 is optimized for high performance logic,

and offers more than 50% higher capacity, higher

performance, and more resources as compared to the

Nexys2‟s Spartan-3 500E FPGA.

Fig.3.7 Hardware implementation on FPGA

For the hardware implementation we used clock, push

buttons and LEDs on FPGA kit. A single 100MHz CMOS

oscillator is used and two push buttons are used one for

reset and second one for pipeline enable. Impact tool

targets the FPGA device by initializing the chain and then

programs the selected device by loading the generated bit

file through USB (UART) programming cable. Output

shows on LED which is shows the corrected information

vector.

Design Propagation

Delay

Serial 54.51ns

Parallel 3.634ns

Pipeline 3.017nn

Table 3.1 Comparision table

IV. CONCLUSION

In this paper, we have presented a complete MLDD

system in which serial, parallel and pipeline corrector are

designed. The majority logic decoder/detector outcome

that this method is simple and fast, which facilitate the

efficient intend for more secured systems. Majority logic

decoder/detector can be detect the number of errors and

correct it. MLDD have the capability of reduces the area

of majority gate by using sorting network. The objective

was to reduce the decoding time means the speed is

increases. The simulation result shows that all tested
combinations of error affecting up to two bits are detected

and corrected. The errors are detected by using serial,

parallel and pipeline method. For simulation process serial

corrector used 15 cycles for write operation and 15 cycles

for read operation. Also the parallel and pipeline corrector

in which two cycles are used one for write operation and

second one for read operation. Therefore the delay time is

reduced. The results are obtained by using Xilinx 14.5 and

Modelsim SE 6.3f. The hardware implementation

designed on Spartan-6 FPGA kit.

Future work, overall system computes on ASIC
(application specific integration circuit) or SoC (system on

chip). Because the speed of ASIC is faster than FPGA.

This gives enoromous opportunity for speed optimizations.

SOC can be designed to work at particular frequency and

FPGA has the frequency limit like Spartan cannot run

more the 500 MHz. SOC contains all the modules

including PLL, Data converters & processors etc. FPGA

can be programmed to work as a chip for the particular

application & may not be having all the modules inside of

FPGA itself.

ACKNOWLEDGMENT

We are very grateful to our HVPM College of Engineering

and Technology to support and my guide Prof. Ashish

Bhande and other faculty also associates of ENTC

department who are directly & indirectly helped me for

this paper.

REFERENCES
[1]. P. Kalai Mani, V. Vishnu Prasath, “Majority Logic Decoding Of

Euclidean Geometry Low Density Parity Check (EG-LDPC)

Code,” International Journal of Innovative Research in Computer

and Communication Engineering, Vol.2, Special Issue 1, March

2014.

[2]. Adline Priya, “Low Power Error Correcting Codes Using Majority

Logic Decoding,” International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622, March 2014.

 ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4462 277

[3]. Anu Jose, M.Revathy, “VLSI implementation of EG-LDPC codes

using maximum likelihood decoding,” International Journal of

Science, Engineering and Technology Research (IJSETR),

Volume 3, Issue 4, April 2014.

[4]. M. Sakthivel, M. Karthick Raja , K R. Ragupathy and K. Sathis

Kumar, “Performance comparision of EG-LDPC codes with

maximum likelihood algorithm over non binery LDPC codes.,”

International Journal of Computational Science and Information

Technology (IJCSITY) Vol.2, No.2, May 2014.

[5]. M. Pramodh Kumar, S. Murali Mohan, “Serial one-step majority

logic decoder for EG-LDPC code,” IJISET - International Journal

of Innovative Science, Engineering & Technology, Vol. 1 Issue 6,

August 2014.

[6]. Pedro Reviriego, Juan A. Maestro, and Mark F. Flanagan,” Error

Detection in Majority Logic Decoding of Euclidean Geometry

Low Density Parity Check (EG-LDPC) Codes” IEEE Trans. Very

Large Scale Integration (VLSI) Systems, Vol. 21, No. 1, January

2013.

[7]. D. Subalakshmi, Major. P. S. Raghavendran, “Error Identification

and Correction for Memory Application using Majority Logic

Decoder and Detector,” International Journal of Computer

Applications (0975 – 8887) Volume 64– No.10, February 2013.

[8]. R. Meenaakshi Sundhari, C .Sundarrasu, M. Karthikkumar, “An

Efficient Majority Logic Fault Detection to reduce the Accessing

time for Memory Applications,” International Journal of Scientific

and Research Publications, Volume 3, Issue 3, March 2013.

[9]. Senbagapriya.S, “An Efficient Enhanced Majority Logic Fault

Detection with Euclidean Geometry Low Density Parity Check

(EG-LDPC) Codes for Memory Applications,” International

Journal of Engineering Science and Innovative Technology

(IJESIT) Volume 2, Issue 6, November 2013.

[10]. S. Liu, P. Reviriego, and J. Maestro, “Efficient majority logic fault

detection with difference-set codes for memory applications,”

IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 20, no.

1, pp. 148–156, Jan. 2012.

[11]. K .Manikandan, G. Thiruselvi, “ Fault Secure Memory Design

using Difference Set Codes,” Special Issue of International Journal

of Computer Applications (0975 – 8887) on International

Conference on Electronics, Communication and Information

Systems (ICECI 12).

[12]. Vijaykumar K. and Dr. K. Ashok Babu, “Fault tolerant nano-

memory with fault secure encoder and decoder,” Vol. 3 No. 1 Jan

2011.

[13]. S. Ghosh and P. D. Lincoln, “Low-density parity check codes for

error correction in nanoscale memory,” SRI Computer Science

Lab., Menlo Park, CA, Tech. Rep. CSL-0703, 2007.

[14]. S. Lin and D. J. Costello, Error Control Coding, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 2004.

[15]. J. Bhaskar, A VHDL Primer, 3
rd

 edition, PEARSON, Prentice

Hall, 2006.

[16]. http://www.xilinx.com.

[17]. Nexys3™ Board Reference Manual, Revision: April 10, 2013.

